1. Introduction

Thank you for purchasing a Specac Product.

The Low Temperature Golden Gate™ single reflection diamond ATR top plate is designed for use on the Golden Gate™ ATR optical unit. It is used to study liquid or solid samples at temperatures from -150°C to 80°C. Liquid samples are analyzed by simply covering the diamond ATR crystal, and the standard Golden Gate clamp bridge is used to provide pressure for solid samples, providing excellent sample contact.

Fig 1. Cutaway Sectional Front View of Low Temperature Golden Gate™ Top Plate
The analysis area of the top plate is a heatable diamond crystal bonded into a tungsten carbide support disk (1), surrounded by a cooling jacket dewar assembly (2). The dewar assembly is clamped to the heated diamond ATR top plate (3) by four clamping screws (4). There is a heat transfer gasket (5) between the diamond/ tungsten carbide disk (1) and the centre part of the dewar (2). (Please see Figs 1 and 2.)

Fig 2. Diamond/Tungsten Carbide Puck and Gasket detail area of Low Temperature Golden Gate™ Top Plate

Using liquid nitrogen as an example refrigerant in the dewar chamber (6) and from control of power to the heaters, temperatures below ambient can be achieved. For temperatures above ambient, no refrigerant is required and the heaters for the diamond crystal are used alone. Power to the heaters is provided by a dedicated 4000 Series Temperature Controller. A separate instruction manual is provided for operation of the Temperature Controller with the Low Temperature Golden Gate™ ATR top plate.
2. Packing and Checklist

On receipt of your Low Temperature Golden Gate™ ATR accessory please check that the following have been provided.

- Low Temperature Golden Gate™ single reflection diamond ATR top-plate (P/N GS10590).
- Golden Gate Optical unit with choice of ZnSe or KRS-5 lenses and appropriate Benchmark baseplate (if ordered as a complete Golden Gate system (P/N GS10592)).
- 4000 Series Temperature Controller, instruction manual and power cables.
- Flat “transfer load” anvil to sapphire tipped rod assembly.
- Sapphire tipped rod assembly.
- Liquid sample injector consisting of an insulated 16 gauge hypodermic needle and glass syringe.
- Plastic funnel
- Allen key (2mm).
- Allen key (3mm).
- Hex head ball driver (3mm).
- Long T bar type Allen key (5mm).
- Packet of glass filled PTFE gaskets (5).
- Packet of high thermal transfer gaskets (20)
- Spare Viton ‘O’ ring seal.
- An Essential Spares Kit of parts (P/N GS10550)

Carefully remove the equipment from their packaging and proceed to install into your spectrometer system.
3. Safety of Use

Safety Note: Risk of Frostbite.

The Low Temperature Golden Gate™ ATR top plate requires the use of refrigerants (principally, liquid nitrogen - LN2) for operation at sub ambient temperatures. When using refrigerants you must wear appropriate safety clothing such as spectacles and gloves to prevent injury to yourself and the possible risk of frostbite. Specac cannot be held responsible for misuse of the types of refrigerants and refrigerant mixtures used in operation.

When filling the dewar chamber (6) with LN2, the plastic funnel (7) supplied helps to direct the refrigerant to the bottom of the outer part of the dewar and prevents accidental spillage of the refrigerant to other areas of the equipment. The funnel (7) can be used for introduction of a liquid refrigerant to pass through the small hole (8) or the crescent shaped cut out (9) in the dewar cap (10). (See Fig 2).

Fig 2. Dewar Cap and Funnel Parts of Low Temperature Golden Gate™ ATR Accessory
4. Installation

If the Low Temperature Golden Gate™ ATR Accessory under P/N GS10592 has been supplied then the Low Temperature Golden Gate™ top plate is already fixed to the Golden Gate™ optical unit (11) (see Fig 3.) and the whole is mounted on an appropriate Benchmark™ type baseplate within the sample compartment of a Spectrometer. (See installation procedure of the Golden Gate™ optical unit for your Spectrometer from the Golden Gate instruction manual (P/N GS10500))

Fig 3. Low Temperature Golden Gate™ ATR Accessory
When installed, make the necessary connections from the top-plate to the 4000 Series Temperature Controller. (See instructions in the 4000 Series Temperature Controller instruction manual).

Fixing of P/N GS10590 Top Plate

If the Low Temperature Golden Gate™ ATR top plate and controller system has been purchased as an upgrade (P/N GS10590) for an existing Golden Gate™ ATR accessory, there is a specific way that the Low Temperature Golden Gate™ top plate is attached to the optical unit.

![Fig 4. Separation of Low Temperature Golden Gate™ Dewar Assembly from Heated Top Plate and Optical Unit Assembly](image-url)
The Low Temperature Golden Gate™ ATR top plate cold dewar assembly (2) is attached to a stainless steel heated top plate assembly (3) by the four clamping screws (4). (See Fig 4.) These four screws need to be unscrewed (using the long T bar type Allen Key 5mm) to separate the cold dewar assembly (2) from the heated top plate (3) to allow for attachment of the complete Low Temperature Golden Gate™ top plate assembly to the Golden Gate™ optical unit (11). The dewar assembly (2) is also removed from the heated top plate assembly (3) to change and/or clean and inspect the thermal transfer gasket (5) against the diamond /tungsten carbide support disc (1).

The heated top plate assembly (3) attaches to the Golden Gate™ optical unit (11) via two M4 x 16mm screws (12). (See Fig 5.) These screws are in place of the usual clamping thumb screws (see item (3) in P/N GS10500 Golden Gate™ instruction manual) and are shorter in height to allow for fixing of the cold dewar assembly part over the stainless steel heated top plate.
When the heated top plate assembly (3) has been fitted to Golden Gate™ optical unit (11) by tightening of the two M4 x 16mm screws (12), the cold dewar assembly (2) can then be fixed to the stainless steel heated top plate assembly (3) using the four clamping screws (4). Before tightening the dewar assembly to the heated top plate assembly ensure that the correct thermal transfer gasket (5) (choice of a white glass filled PTFE or grey graphite gasket) has been placed correctly into position over the diamond/tungsten carbide puck (1). Be careful that you do not move the gasket (5) to cover/obscure the diamond crystal itself of the puck (1) when placing the dewar assembly (2) over the heated top plate assembly (3).

When tightening the four clamping screws (4), (see Fig 4.) ensure that the two surfaces between the cold dewar assembly (2) and heated top plate (3) remain parallel and even all the way around their edges as the surfaces of the plates are clamped closer together. Evenness in fit ensures correct thermal contact and sealing of the thermal transfer gasket (5) between the dewar assembly (2) and the diamond tungsten carbide puck (1).

Note: *When the Low Temperature Golden Gate™ ATR Accessory has been supplied under P/N GS10592, a white glass filled PTFE thermal gasket (5) will already be fitted into position.*

Important Note

When carrying out the alignment procedure on the optical components (mirrors and lenses) within the Golden Gate™ optical unit (see alignment procedure in the Golden Gate™ instruction manual P/N GS10500), ensure that the cold dewar assembly (2) and appropriate thermal transfer gasket (5) to be used has been tightened/screwed down correctly to the heated top plate assembly (11) of the of the Low Temperature Golden Gate™ ATR top plate assembly. The diamond/puck assembly (1) has been designed to be supported under sprung loaded tension and may move slightly when the cold dewar assembly (2) is placed into position. Therefore, optimum light beam throughput is achieved when the cold dewar assembly (2) is fixed in the working position over the diamond (1).
5. Operation of the Low Temperature Golden Gate™ ATR Top Plate

Important Note for Operation

When using the Low Temperature Golden Gate™ ATR accessory at temperatures below the ambient dew point, it is **essential** to use and establish a nitrogen purge within the Golden Gate™ optical unit (11) **before** any refrigerant is poured into the dewar chamber (6). This is to prevent condensation or frost forming on the internal optics of the Golden Gate™ optical unit. The purge can be established by using a spectrometers own purge facility (if available) by using the purge bellows (P/N GS10707) to bridge the gap between the Golden Gate™ apertures (13) and the input and output ports of the Spectrometer. (See Purging the Golden Gate in the P/N GS10500 manual.) Alternatively, with the purge bellows fitted to the aperture ports (13), the optical unit (11) can be purged via the two purge port hose connectors (14) on the front of the Golden Gate™ optical unit (11) using a dedicated dry nitrogen gas supply. (See fig 3.)

Dewar Cap (10) Nitrogen Purge Connections

A nitrogen purge that is required to prevent frosting of the optical components in the Golden Gate™ optical unit (11) during low temperature operation is also needed for the central internal area of the dewar assembly (15) above the diamond/tungsten carbide puck (1) when taking reference background spectra for sub-ambient temperature conditions. See Fig 6.

When the dewar cap (10) is placed into position, to cover the dewar chamber (6), a supply of nitrogen gas can be introduced through one of the 3.5mm diameter purge gas flow holes (16) in the dewar cap (10). Similar to the optical unit (11) gas purge requirement, a purge gas though the dewar cap (10) must be established before introduction of any refrigerant. The inner chamber area (15) below the cap (10) will be filled with the nitrogen gas and a flow of the gas will minimize any risk.
of condensation forming and possibly freezing to the surface of the diamond ATR crystal. See Fig 7.

Fig 6. Low Temperature Golden Gate™ Dewar area with Dewar Cap removed. (Inner and Outer Dewar Chambers)

Fig 7. Low Temperature Golden Gate™ Dewar Cap Purge Holes
Refrigerants to Use

A variety of refrigerant mixtures can be used for sub-ambient operation of the Low Temperature Golden Gate™ ATR accessory. The minimum temperature achievable is -150°C in combination with use of liquid nitrogen as the refrigerant and the grey coloured graphite high thermal transfer gasket (5) in position between the dewar assembly (2) and the diamond/tungsten carbide puck (1). A list of refrigerant mixtures that can be used is seen on the following table.

Table of Refrigerants to Use in the Low Temperature Golden Gate™ ATR Accessory

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Mixed Temperature (a)</th>
<th>Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°K</td>
</tr>
<tr>
<td>Ice Water</td>
<td>0</td>
<td>273</td>
</tr>
<tr>
<td>Sodium Chloride/Ice (33g salt/81g ice)</td>
<td>-21</td>
<td>252</td>
</tr>
<tr>
<td>Calcium Chloride/Ice (100g salt/81g ice)</td>
<td>-40</td>
<td>233</td>
</tr>
<tr>
<td>Chloroform/Liquid Nitrogen (slush)</td>
<td>-64</td>
<td>209</td>
</tr>
<tr>
<td>Solid CO2/Ether</td>
<td>-78</td>
<td>195</td>
</tr>
<tr>
<td>Solid CO2/Acetone</td>
<td>-78</td>
<td>195</td>
</tr>
<tr>
<td>Solid CO2/Isopropanol</td>
<td>-78</td>
<td>195</td>
</tr>
<tr>
<td>Toluene/Liquid Nitrogen (slush)</td>
<td>-95</td>
<td>178</td>
</tr>
<tr>
<td>Pentane/Liquid Nitrogen (slush)</td>
<td>-130</td>
<td>143</td>
</tr>
<tr>
<td>Liquid Air (21% oxygen)</td>
<td>-147</td>
<td>126</td>
</tr>
<tr>
<td>Isopentane/Liquid Nitrogen (slush)</td>
<td>-160</td>
<td>113</td>
</tr>
<tr>
<td>Liquid Oxygen</td>
<td>-182</td>
<td>91</td>
</tr>
<tr>
<td>Liquid Nitrogen</td>
<td>-196</td>
<td>77</td>
</tr>
</tbody>
</table>

(a) These figures are approximate as actual mixture temperatures are affected by impurities.
For optimum temperature control in operation, you should choose the refrigerant mix closest to the temperature you wish to study. From the examples above, the natural freezing point of LN2 is -196°C, but the lowest temperature achievable for the system overall is -150°C using this refrigerant with an appropriate grey coloured graphite high thermal transfer gasket (5). It will be a matter of experimentation for the best choice of a refrigerant and gasket (5) combination, depending upon the minimum and maximum temperatures to be achieved and the temperature degree of control required.

In general, for temperature operation between -100°C and -150°C the high thermal transfer graphite gasket (5) must be used. This gasket material allows for these low temperatures to be reached, but does not have the same degree of temperature control offered by the low thermal transfer white PTFE gasket (5).

In general, for temperature operation between ambient and -100°C the low thermal transfer white PTFE gasket (5) must be used, if a finer degree of temperature control and thermal stability is required.

Preparation for Use and General Operation

The successful use of the Low Temperature Golden Gate™ ATR accessory depends on the correct balancing of a particular refrigerants “heat removing” capability against the energy (heat) input from the electrical block heaters (17), built into the heated top plate assembly (3) at the base of the dewar assembly (2). See Fig 8. The type of experiment being carried out also determines a method of use and, most importantly, the choice of thermal transfer gasket (5) between the dewar assembly (2) and the diamond/tungsten carbide puck (1).

Note: In any experiment it is advisable to take a reference background Spectrum (or spectra) at the same actual temperature conditions when collecting a spectrum (or spectra) for the sample. This is to obtain the optimum spectral results when the background spectrum is subtracted from the sample spectrum.
If it is a requirement to obtain spectra for a sample at two different physical states, solid and liquid, depending upon the freezing point of a liquid sample it may be preferable to use the graphite high thermal transfer gasket (5) in position. This gasket material will permit operation down to the minimum temperature obtainable with this accessory to -150°C. By using this high thermal transfer gasket (5) the sample can be quickly frozen using only a small amount of LN2 refrigerant, allowing it to boil off as soon as the desired temperature is reached. This will minimize condensation and icing on the dewar (2).

Procedure Using a High Thermal Transfer Gasket

To ensure freezing of the LN2 refrigerants lowest temperature capability (circa -150°C with a graphite high thermal transfer gasket (5) being used), the block heaters (17) must be switched off by selecting a lower **set** temperature on the controller (e.g. at least 10°C less than the value showing for any **actual** temperature from the LN2 refrigerants cooling action). Therefore a suggested **set** temperature at the start of experimentation is -150°C on the controller, as the accessory overall will never get colder than this temperature value.
Reference Spectrum Collection

For collection of a background reference spectrum, at room temperature conditions, establish the nitrogen purge gas conditions in the optical unit (11) and within the internal sample chamber area (15) from connection of the purge gas via a suitable flow pipe or tubing through one of the dewar cap purge gas holes (16), before any refrigerant is added.

Introduce some LN2 into the dewar chamber (6) using the funnel (7) through the funnel hole (8) or crescent shaped cut out (9) in the dewar cap (10). Initially, there will be some fuming of the LN2 as it boils off by coming into contact with a warmer environment, but by adding small amounts of LN2, after time the actual temperature on the controller display will begin to drop fairly quickly indicating the effect of the LN2 refrigerant action to the sample area for temperature measurement.

When the actual temperature has dropped to a value that is to be used for study, stop adding any further LN2 refrigerant. If only small amounts of LN2 have been added, once the remaining residual LN2 has boiled off from the dewar chamber (6), and because the heaters (17) will still be inactive as the actual temperature will be higher than the set temperature (-150°C), the accessory will start to warm up naturally from the general ambient surroundings. At this stage when the temperature value becomes relatively stable, a background ATR spectrum can be collected and stored for use against an ATR spectrum taken for a sample at the same temperature and conditions of use.

If the refrigerant effect of the LN2 in combination with a high thermal transfer graphite gasket (5) is causing the temperature to be too low in value, (i.e. towards the minimum -150°C value), then the heaters (17) may need to be activated to balance the cooling effect and raise the temperature to the value desired. Therefore, if say a temperature of -100°C is required, change the set temperature value to -100°C on the controller. If the actual temperature is indicating a temperature value lower than -100°C, the heaters (17) will activate (the heater light pulses on the controller display) and the temperature will rise.
Note: *It is important for this type operation at very low temperatures to ensure the LN2 refrigerant level is kept topped up to provide the “balancing effect” against the power from the heaters (15).*

Sample Spectrum Collection

When a reference spectrum at a particular low temperature value has been collected the procedure of operation needs to be repeated, but with some subtle changes.

To place a sample into position on the diamond crystal (1) after collection of a reference spectrum, the Low Temperature Golden Gate™ ATR accessory must be allowed to warm up to ambient conditions. When the accessory is near to, or has reached room temperature, dry off any external condensation using tissues. It may be easier to dry the unit thoroughly by disconnecting the 4000 Series Temperature Controller and removing the Low Temperature Golden Gate™ accessory from the spectrometer and to place it on a workbench.

When cleaned and dried, and re-installed in the spectrometer, at room temperature conditions establish the nitrogen purge gas conditions in the optical unit (11) and within the internal sample chamber area (15), before any refrigerant is added, a liquid sample is placed in position to cover the diamond of the diamond/tungsten carbide puck (1). Included with the accessory is a liquid sample injector consisting of an insulated 16 gauge hypodermic needle and glass syringe that can be used for delivery of a liquid sample at the base of the internal chamber area (16) and over the diamond (1).

When the liquid sample is in place, re-position the dewar cap (10) and you may then wish to re-establish a nitrogen purge flow to the internal chamber (15) by use of a nitrogen flow tube through one of the dewar cap holes (16). It depends upon the stability of the liquid sample to be analysed (its relative volatility), if this nitrogen purge over the sample may be necessary.

Introduce some LN2 into the dewar chamber (6) using the funnel (7) through the funnel hole (8) or crescent shaped cut out (9). Initially,
there will be some fuming of the LN2 as it boils off by coming into contact with a warmer environment, but by adding small amounts of LN2, after time the actual temperature on the controller display will begin to drop fairly quickly indicating the effect of the LN2 refrigerant action to the sample area for temperature measurement.

When the actual temperature has dropped to a value that has allowed the liquid sample to become frozen and solidify, do not add any further LN2 refrigerant. If only small amounts of LN2 have been added, once the remaining residual LN2 has boiled off from the dewar chamber (6), and because the heaters (17) will still be inactive if the actual temperature is higher than the set temperature, the accessory will start to warm up naturally from the general ambient surroundings.

The actual sample temperature can be monitored from the controller readout as the temperature value raises toward the ambient (room temperature) conditions. ATR spectra can be taken at lower temperature values for a solidified state of the sample and then when it has reverted to its liquid state at a higher temperature.

Note: The above general operation procedure applies equally well to solid samples in place of a liquid sample as has been described.

Other Examples of Operation

1) Use of Liquid Nitrogen to -80°C

To hold a sample at steady low temperature (down to -80°C) it is necessary to reduce the very strong cooling effect of the liquid nitrogen (LN2) by using a low thermal transfer gasket (5) between the dewar assembly (2) and the diamond/tungsten carbide disc (1). This gasket (5) is the white, glass-filled PTFE, washer shaped disc, supplied and fitted as standard. (See Note page 10.) This gasket allows for a longer lifetime of refrigerant to be maintained in the dewar chamber (6) (once the dewar chamber has reached an equilibrium temperature), and to establish a relatively slow temperature fall of the sample. The low
thermal transfer capability of this type of gasket also allows for a more controllable and precise way to slowly raise or lower the temperature.

Install the accessory in the Spectrometer, align the optics according to the Golden Gate™ instruction manual (GS10500) and connect up the 4000 Series Temperature Controller. Establish the nitrogen purge to both the optical unit (11) and the internal chamber area (15) via the dewar cap (10).

To ensure that there is a valid background reference at all temperatures of interest, it is useful to store a series of backgrounds at the temperatures at which it will be used. By doing this, it will not be necessary to clean and dry the dewar/diamond interface during any experiments. The easiest way to do this is to input a set temperature on the 4000 Series Controller just below the temperature value to be measured and pour small aliquots of liquid nitrogen into the outer part of the dewar (6) using the plastic funnel (7) supplied, until this temperature is achieved.

Note: Never fill the dewar chamber (6) completely. In general the level of refrigerant within the dewar chamber should be sufficient to cover the internal foam insulating sleeve within the dewar chamber.

After reaching the lowest temperature required to measure for a background reference spectrum, allow the Low Temperature Golden Gate™ accessory to warm up to the next temperature to measure. Change the set temperature on the controller to a level just below that needed. Save reference background spectra as the correct temperatures are reached whilst, overall, the temperature is rising back to ambient conditions.

After reference spectra have been collected, a liquid or solid sample analysis can be carried out as follows.

Liquid Samples

1. Set a temperature on the 4000 Series Temperature Controller to be a few degrees below the temperature required. Carefully
introduce just one or two drops of the liquid sample onto the diamond (1) using the special syringe and hypodermic needle supplied.

2. Cool the dewar (6) by adding small amounts of liquid nitrogen from a small vacuum flask using the funnel (7) provided to ensure that the liquid nitrogen is directed to the bottom of the outer part of the dewar and does not splash into the inner part of the dewar (15). The funnel is inserted into the round hole (8) in the dewar cap (10) and the level of the liquid nitrogen can be viewed through the crescent cut out section (9). Do not fill the level higher than the foam packing sleeve within the outer dewar section (6). Monitor the temperature to see that it does not drop too fast. Never fill the dewar (6) completely.

3. When the desired temperature is reached and the sample is still in a liquid, or has changed into a solid state, it is possible to scan it and reference it against the appropriate stored background.

Note: During the freezing process, the sample may contract and shrink away from the diamond (1). To re-establish correct contact the long sapphire anvil (18) can be used to apply a small amount of pressure to the frozen sample. The long sapphire anvil (18) is put down into the center part of the dewar (15) through the hole (19) in the dewar cap (10) and the bridge assembly (20) of the Low Temperature Golden Gate™ top plate is closed and locked. A flat anvil (21) is fixed to the clamp part (22) of the bridge assembly (20) and is used to transfer the pressure to the long sapphire anvil (18). The torque screw (23) is turned clockwise to apply sufficient pressure to the solidified sample. (See Figs 9 and 10, for explanation of these parts.)

If the frozen sample being analyzed is water based, it is possible that too much pressure from the long sapphire anvil (18) may cause it to revert to the liquid state. Removing some pressure from the long sapphire anvil (18), (turn torque screw (23) anticlockwise) should give correct sample contact in readiness for collection of an Infrared ATR spectrum.
Low Temperature Golden Gate™ ATR

Fig 9. Low Temperature Golden Gate™ Bridge Assembly with Dewar Cap, Flat Anvil and Sapphire Rod in position

Fig 10. Low Temperature Golden Gate™ Flat Anvil, Sapphire Rod and Dewar Cap Parts.
4. By allowing the system to slowly warm up, without the addition of any more liquid nitrogen, the solid/liquid phase spectral scan can be repeated as the appropriate **actual** temperature is seen on the 4000 Series Temperature Controller display.

5. After completion of the experiment, use the syringe and hypodermic needle to remove as much sample as possible. Set the 4000 Series Temperature Controller to warm up the top plate to 30 to 40°C. When this temperature has been reached set the 4000 Series Temperature Controller back to room temperature to allow the top plate to cool down.

6. When the accessory is at or near room temperature, dry off any external condensation with tissues. Disconnect the 4000 Series Temperature Controller, remove the accessory from the spectrometer and take it to a workbench.

7. Using the long T bar type Allen Key 5mm loosen the four captive clamp screws (4) and remove the complete dewar assembly (2) from the Golden Gate™ heated diamond ATR top plate (3). It is now possible to dry off any remaining sample and clean the diamond surface (1). The heat transfer gasket (5) is situated between the diamond plate (1) and the centre part of the dewar (15). When the dewar (2) is removed this gasket may be found attached to either surface (dewar or diamond plate). The glass filled PTFE type gasket (white) should be in good condition and will be usable for many experiments. Remove it, clean and dry it. The high thermal transfer type graphite gasket (dark grey color) is more fragile, and may be firmly attached to one of its contact surfaces. If it cannot be cleanly peeled off, it will have to be carefully removed with a sharp blade and then discarded. (Be careful not to scratch the dewar contact surface (2) with the blade). If the gasket is in good condition it may be cleaned and used again. The gasket will need to be replaced before the next experiment.

Note: When replacing the dewar (2) make sure the four captive clamp screws (4) are tightened evenly and firmly.
Solid Samples

The ideal solid sample shape for the Low Temperature Golden Gate™ diamond ATR top-plate is a 5mm diameter disc. The solid sample is dropped down into the centre part of the dewar (15) such that it lies correctly on the diamond (1). Small pellets (less than 6mm in diameter) and powders can also be analyzed by similarly dropping into the center part of the dewar (15) to cover the diamond (1).

The long sapphire anvil (18) is put into position in the centre of the dewar (2) to make contact with the top of the sample and can be pressurized from the Golden Gate bridge torque assembly (23) to give good sample contact at the desired, selected temperature. The torque screw (23) clamp knob is preset to apply a load of circa 80lbs on the sample. When the long sapphire anvil (18) is applying this load to the sample and the set temperature has been reached you are ready to collect spectral scans of the sample. Similar to the procedure for liquid samples, it is useful to take spectra during cool-down and warm-up to give a double set of results through the possible phase changes.

To remove the solid sample from the diamond/tungsten carbide disc (1) and for subsequent cleaning, the complete dewar assembly (2) must be removed. The four captive clamp screws (4) are loosened by use of the T bar type Allen Key 5mm. On removal, check to see if the heat transfer gasket (5) needs replacing before the next experiment.

General Note: In a normal laboratory atmosphere, when the accessory is used at very low temperatures, outer parts of the accessory will have moisture or frost on them. Keeping experiments as short as possible will minimize this effect. Always set the temperature to warm up to 30 or 40 °C after an experiment and make sure the accessory is clean and dry before storage. Keeping the accessory in a warming cabinet after use is recommended.
2) Use of Cardice (dry CO2) and Acetone as Refrigerant at -30°C

For operation between temperatures of -30°C through to circa 20°C, cardice (dry CO2) and acetone as a refrigerant can be used with a white glass filled PTFE gasket (5) in position.

To assist in potential fine control and stability between temperature states over this temperature range it is necessary to change the block heaters (17) power by changing the OpuL parameter setting on the 4000 Series temperature controller. (Please see parameter listing in Section 6).

In addition to a change in the heater power setting, the “proportional” (Pb-P), “integral” (ArSt) and “derivative” (rAtE) parameters will need to be adjusted to allow for a smooth delivery of the power such that the change in temperature is gradual, controlled and does not “overshoot” or “undershoot” to the temperature value being set. Please consult the instruction manual supplied for the 4000 Series Temperature Controller to explain how to access the factory set parameter list values for the Low Temperature Golden Gate™ accessory and how these values/settings can be changed.

For this particular type of experiment using the cardice/acetone refrigerant with the white PTFE low thermal transfer gasket (5) over the temperature range from -30°C to 20°C at 5°C steps for temperature measurement, the control parameters are set as follows:-

Parameter OpuL (heater power) is set to 35. (35% power).
Parameter Pb-P (proportional) is set to 10.0.
Parameter ArSt (integral) is set to 4.0.
Parameter rAtE (derivative) is set to 0.04.

Note: The above parameters are changed and used for control with the setpoint ramp rate value parameter rP set to OFF.

With practice and experience for different sample types, refrigerant mixtures and temperature range to study, these general parameters and their settings may need to be varied to suit for control accordingly.
6. **Operating Parameters for the Low Temperature Golden Gate™ ATR Top Plate**

The Low Temperature Golden Gate™ ATR top plate is provided with its own dedicated 4000 Series™ Temperature Controller. A separate manual is supplied for operation of the 4000 Series™ Temperature Controller.

For operation of the Low Temperature Golden Gate™ ATR top plate the parameters of the 4000 Series™ Temperature Controller have been factory set as shown on the following page. Not all of the displayable parameters can be changed but have been listed for reference purposes. If you ever need to change a parameter or autotune the controller for a particular temperature range certain parameter settings will be altered. You can get back to original factory settings by reprogramming the controller with these original values.

Specifications

Accessory Type 10590/10592

<table>
<thead>
<tr>
<th>Feature</th>
<th>230V</th>
<th>110V</th>
<th>100V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>230V</td>
<td>110V</td>
<td>100V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50HZ</td>
<td>60HZ</td>
<td>50/60HZ</td>
</tr>
<tr>
<td>Max Power</td>
<td>150W</td>
<td>150W</td>
<td>150W</td>
</tr>
<tr>
<td>Fuse Rating</td>
<td>1.5A</td>
<td>3A</td>
<td>3A</td>
</tr>
<tr>
<td>Fuse Type</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Insulation rating of external circuits (appropriate for single fault condition) = basic insulation and protective (earth) bonding.

Humidity operation range – 20% to 90% relative humidity non-condensing.
Displayable Parameters For Low Temperature Golden Gate ATR
Top-plate 10590 with WEST 6100+ (4000 Series™) Controllers

<table>
<thead>
<tr>
<th>Parameter Display (In Green)</th>
<th>Parameter Name</th>
<th>Parameter Factory Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FiLt</td>
<td>Input Filter Time Constant</td>
<td>3.0</td>
</tr>
<tr>
<td>OFFS</td>
<td>Process Variable Offset</td>
<td>0</td>
</tr>
<tr>
<td>PP</td>
<td>Primary (Heat) Output Power</td>
<td>0</td>
</tr>
<tr>
<td>Pb_P</td>
<td>Primary Output Proportional Band</td>
<td>0.5</td>
</tr>
<tr>
<td>ArSt</td>
<td>Automatic Reset (Integral Time Constant)</td>
<td>0.34</td>
</tr>
<tr>
<td>rAtE</td>
<td>Rate (Derivative Time Constant)</td>
<td>0.08</td>
</tr>
<tr>
<td>biAS</td>
<td>Manual Reset (Bias)</td>
<td>25</td>
</tr>
<tr>
<td>SPuL</td>
<td>Setpoint Upper Limit</td>
<td>80</td>
</tr>
<tr>
<td>SPLL</td>
<td>Setpoint Lower Limit</td>
<td>-150</td>
</tr>
<tr>
<td>OPuL</td>
<td>Primary (Heat) Output Upper Power Limit</td>
<td>100</td>
</tr>
<tr>
<td>Ct l</td>
<td>Output 1 Cycle Time</td>
<td>4</td>
</tr>
<tr>
<td>PhAl</td>
<td>Process High Alarm</td>
<td>80</td>
</tr>
<tr>
<td>AHyl</td>
<td>Alarm 1 Hysteresis</td>
<td>1</td>
</tr>
<tr>
<td>PLA2</td>
<td>Process Low Alarm</td>
<td>-150</td>
</tr>
<tr>
<td>AHy2</td>
<td>Alarm 2 Hysteresis</td>
<td>1</td>
</tr>
<tr>
<td>APt</td>
<td>Auto Pre-Tune enable/disable</td>
<td>diSA</td>
</tr>
<tr>
<td>PoEn</td>
<td>Manual Control select enable/disable</td>
<td>diSA</td>
</tr>
<tr>
<td>SPr</td>
<td>Setpoint Ramping enable/disable</td>
<td>EnAb</td>
</tr>
<tr>
<td>rP</td>
<td>Setpoint Ramp Rate Value</td>
<td>1800</td>
</tr>
<tr>
<td>SP</td>
<td>SP Value</td>
<td>0</td>
</tr>
<tr>
<td>SLoc</td>
<td>Set-up Lock Code</td>
<td>10</td>
</tr>
</tbody>
</table>
7. Legend - Part Identification of Low Temperature Golden Gate™ Top Plate

1. Diamond/tungsten carbide support disc.
2. Cooling jacket dewar assembly.
3. Heated diamond ATR top plate assembly.
4. Dewar assembly clamp screw.
5. Heat transfer gasket.
6. Dewar chamber (contains refrigerant).
8. Dewar cap funnel hole.
9. “Crescent” area cut out in dewar cap.
10. Dewar cap.
11. Golden Gate™ optical unit.
12. Heated diamond ATR top plate fixing screw.
13. Golden Gate™ optical unit aperture port.
15. Central internal area of dewar assembly.
17. Heated diamond ATR top plate block heater.
18. Long sapphire anvil rod.
19. Dewar cap long sapphire anvil rod hole.
20. Low Temperature Golden Gate™ top plate bridge assembly.
21. Low Temperature Golden Gate™ flat anvil.
22. Clamp part fixing for flat anvil.
23. Torque knob screw assembly.
8. Spare Parts for Low Temperature Golden Gate™ Top Plate

P/N GS10593 Glass filled PTFE gaskets (white colour) (Pkt of 5)
P/N GS10594 High thermal transfer graphite gaskets (grey colour) (Pkt of 20)
P/N GS10595 Liquid sample injection device.
EC Declaration of Conformity

This is to certify that the:

GOLDEN GATE LOW TEMPERATURE & 4000 Series TEMPERATURE CONTROLLER
10590/10592

Manufactured by:
SPECAC LIMITED

Conforms with the protection requirements of Council directives 2004/108/EC, relating to the
EMC DIRECTIVE,

by the application of:

1) Testing to the following standard:
 EN-61326:2006/8 EMC (Emissions/Immunity) requirements for Electrical Equipment
 for measurement, control and laboratory use.

2) Supported by SPECAC Technical File No. TF10590

and also conforms to the general safety requirements of Council Directives 2006/95/EC, relating to
the LOW VOLTAGE DIRECTIVE,

by the application of:

1) EN61010-1:2010, Safety Requirements for Electrical Equipment for
 Measurement, Control and Laboratory use.

2) Supported by SPECAC Technical File No. TF10590

Responsible Person:

Name: Mr.G.Poulter
Position: Technical Director

Signature:
Of: Specac Ltd.
Date: 21st Aug 2013

conforms to the above

Signature:
Of: Specac Ltd.
Date:

Original to file/1 Copy to Customer:

FS. No: 642-103 Rev. No: 02
Worldwide Distribution

France
Eurolabo - Paris.
Tel. 01 42 08 01 28
Fax 01 42 08 13 65
email: contact@eurolabo.fr

Germany
L.O.T. - Oriel GmbH & Co,
KG - Darmstadt
Tel: 06151 88060
Fax: 06151 880689
email: info@LOT-Oriel.de
Website: www.LOT-Oriel.com/de

Japan
Systems Engineering Inc. - Tokyo
Tel: 03 3946 4993
Fax: 03 3946 4983
email: systems-eng@systems-eng.co.jp
Website: www.systems-eng.co.jp

Spain
Teknokroma S.Coop C. Ltda
Barcelona
Tel: 93 674 8800
Fax: 93 675 2405
email: comercial@teknokroma.es

Switzerland
Portmann InstrumentsAG
Biel-Benken
Tel: 061 726 6555
Fax: 061 726 6550
email: info@portmann-instruments.ch
Website: www.portmann-instruments.ch

USA
SPECAC INC.
414 Commerce Drive
Suite 175,
Fort Washington,
PA 19034, USA
Tel: 215 793 4044
Fax: 215 793 4011

United Kingdom
Specac Ltd. - London
River House, 97 Cray Avenue,
Orpington
Kent BR5 4HE
Tel: +44 (0) 1689 873134
Fax: +44 (0) 1689 878527
Registered No. 1008689 England